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ABSTIMCT 

In the current paradigm there is a non-trivial bias expected in the process of galaxy formation. Thus, 

the observed statistical properties of the galaxy distribution do not necessarily extend to the underlying 

matter distribution. Gravitational evolution of initially Gaussian seed fluctuations predicts that the 

cmmected moments of the matter fluctuations exhibit a hierarcbkal structure, at least in the limit of 

smsll dispersion. This same hierarchical structure has been found in the galaxy distribution, but it is not 

clear to what extent it reflects properties of the matter distribution or properties of a galaxy formation 

bias. 

In this paper we consider the consequences of an arbitrary, effectively local biasing transformation 

of a hiersrchical underlying matter distribution. We show that a general form of such a transformation 

preserves the hierarchical properties and the shape of the dispersion in the limit of small fluctuations, i.e. 

on large scales, although the values of the hierarchical amplitudes may change arbitrarily. We present 

expressions for the induced hierarchical amplitudes S,i of the galaxy distribution in terms of the matter 

amplitudes Sj and biasing parameters for j = 3-7. For higher order correlations, j > 2. restricting 

to a linear bias is not a consistent approximation even at very large scales. To draw any conclusions 

Erom the galaxy distribution about matter correlations of order j, properties of biasing must be specified 

completely to order j - 1. 
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1 Introduction 

There is accumulating observational evidence that the large scale galaxy j-point correlation functions 
exhibit a hierarchical structure. Averaged over a sphere of radius R. this means the order j connected 
moments obey 

F,(R) = s; &RF-I, (1) 

where the 5, are constants over the range of R where the variance or dispersion t2 has a constant slope, 
z2(R) o( R-7. Thisrelation can follow from the scalingsymmetry[j((XzI,. , XZj) = X-(j-‘)Ttj(z1,, , zj) 
or from the multi-point expression 

j-l 

~j(21,...,Zj)=CQj,,CnE2(r.*) 
a {.bl 

(2) 

(Fry 19846). In the standard graphical notation of field theory, associated with each term in equation (2) 
there is R graph. such that vertices. or nodes. correspond to the points II.. , Zj. and edges. or lines. 
between node 0 and node b correspond to factors &(z.b) = (6(&)6(2b) ) that connect all points. Thus 
the hierarchy (2) is composed of “tree” graphs (connected with no cycles) of j vertices and j - 1 edges. 
The sum over Q denotes topologically distinct graphs; the sum over {ab} is over relabelings within Q. If 

‘jV2 all Qj,O are identical, there are in total 3 terms, corresponding to all possible reassignments of the 
labels a, b = 1, . , j, and, up to geometrical factors usually very close to 1, Sj = jj-*Qj. 

Observations suggest that the hierarchy, equation (1) or equation (2), holds both on mildly linear, 
z*(R) 5 1, and nonlinear, .$2(R) 2 1, scales, at least for the lower values of j, and has been found in 
angular catalogs of optical (e.g. Groth & Peebles 1977 Fry & Peebles 1978; Szapudi et al. 1992).and 
IRAS (Me&in et al. 1992) galaxies. Similar results have been reported for redshift samples of IRA.3 
galaxies (Bow&t et al. 1992) and in the CfA and SSRS optical catalogs (Gazttiaga 1992). 

Remarkably, this same hierarchical structure is predicted for the matter distribution evolved gravita- 
tionally~in perturbation theory when the initial fluctuations are. Gaussian (e.g.. Peebles 1980, FIY 19846, 
Goroff et al. 1986, Bernardeau 1992) and also in the highly nonlinear regime of gravitational clustering 
(Davis & Peebles 1977, Peeblea 1980, Fry 19840, Hamilton 1988). But, in order to relate theory with 
the observations, we have to address the problem of how well galaxies trace the matter fluctuations. 
Are the observed hierarchical properties of the galaxy distribution a consequence of the hierarchici 
properties of matter? Or, are they an accident or conspiracy of galaxy-matter biasing? If the galaxy 
distribution is determined physically by the mass distribution, then we expect that the number density 
of galaxies should be given as a functional of the maSs density, n.Jz) = F[p(z)]. Linear biasing, that 
the galaxy fluctuations are proportional to the matter fluctuations, 6, = b6,, is often assumed as an 
approximation at large scales. For this case, up to scalings, all statistical properties are preserved by the 
biasing, and the observed galaxy properties do reflect the matter distribution. However, in the general 
case, we expect it is highly unlikely that the relation is both local and linear. Below, we study how an 
arbitrary nonlinear biasing affects statistical studies on large scales, R 2 IOh-’ Mpc (Hubble’s constant 
Ho = 1M) h km SK’ Mpc-‘), where z?(R) 5 1. We compute the resulting correlation amplitudes directly 
for low order correlations, and we show that the results extend to all orders. We argue finally that 
there may be observational evidence that biasing must be a nonlinear transformation, and it is not clear 
whether the linear approximation is good, or even consistent, at large scales. 



2 Biasing and hierarchical distributions at large scales 

2.1 One-point statistics 

Lets us first consider t,he statistics for one random variable, the (smoothed) density contrast &v(z): 

6,(z) =/&6(Z) W(2 -c’), (3) 

with 15(z) = [p(c) - ij]/& where p(r) is the local density, 7 the mean density and W(r) a normalized 
window function. For a top-hat window, &V(Z) is just the volume average of S(z) over a sphere of radius 
R. To simplify notation. we use 6 for 61y(1). The statistical average is over different realizations of 6(c) 
and corresponds to the average over position in a fair sample of the universe. 

As the result of biasing, we assume that the (smoothed) galaxy density can be written as a function 
of the m8.w density, Ss = [n(z) - iY]/fi = f(6), and express f as a Taylor series: 

(4) 

The linear term bl corresponds to the usual linear bias factor b. To have ( 60) = 0 we must 6x 4 = 
-C& bk (6’ ) /k!. The value of bo is irrelevant for the connected moments for j 2 1, and we will make 
no further mention of b. Equation (4) is not the most general possibility; we could conceive of a relation 
involving 6 at all points such as 

6,(z) = bo + J d3z’b~(z’) 6(c - 2’) + J d3z’d3z”b+‘, 2”) 6(1- z’)6(z - 2”) + (5) 

However, to lowest order in 6, equation (5) would give the two-point function 

1’(w) = /d32;d32’,b(l;)b(l:)E(I=1* - &,I). (6) 

The observational suggestion that for groups and clusters th: correlations of selected objects are propor- 
tional to those of galaxies, CCC(r) = b2&,,(r), . IS an indication that if the relation is nonlocal, the range is 
relatively short. For the windowed field (3) smoothed over large scales, equation (4) should provide an 
adequate first approximation. 

If the matter density 6 has hierarchical irreducible correlations or cumulants as in equation (2), we 
show next that in the limit of small (2, the local biasing transformation in equation (4) preserves the 
hierarchical structure. 

2.2 Expressions for the first orders 

For the first few low order correlations we can compute directly correlations of the biased field in terms of 
those of the original matter field and the biasing parameters. We consider the case of one-point statistics 
to simplify notation. We assume that the matter distribution has hierarchical connected moments 

fj = (a?), = sj g-1, 

where fz = (a*), We use the generating function method for calculating (6/ ), from 
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(Fry 1985), where the biased field 6, is given by equation (4). Following this procedure gives the following 
for Qj for j :- = 2-5: 

Eg.2 = 
G.3 = 
Tg.4 = 

Ts.5 = 

b2:, + b’~;(rsS’n + c3 + c;/2) + u($) 

b3Ci(S3 + 3~) + b3T~23(3c2S4/2 + 9c3S3/2 + 6~gS3 + 3~412 + 6~2~3 + ci) + o(ci) 

b4Zi(s4 + 12C2% + 4~3 + 124) + b4zi[2aSS + 8c3S4 + 18~~5’4 + (6~ + 12,$)$ 

+(12C4 + 78~2~3 + 36~$)& + 2~5 + 18~2~4 + 12~32 + 36c& + 3&j] + o(ci), 

b56zk% + 2Oc2S4 + 15c2$ + (30~3 + l2Ocz)& + 5~4 + 60c3c2 + 60c$] 

+b5ThW2 + (25c3/2 + 4O&S5 + (25~3 + 70&S3S4 + (~5~~ + 230czc3 + 180~;)s~ 

+(75c4/2 + 330~2~3 + 240&i + (25~5 + 310~~~ + 210~: + 1020~;~~ + 2404)~~ 

+5%/2 + 4oCZCs + 7oC3Y + l8Oc$c4 + 240~~; + 240& + 12~9 + o(g), (9) 

where we write cc = bk/b for k 2 2. We have obtained, but do not display, results up to order o(G) for 
cgj up to j = 7. The leading term in equation (9) for cg,2 is the linear bias result, cg 2 = b*cz. To leading 

order in ?z, the remaining results, cg,j for j 2 3, are hierarchical, zgj = Sgti ,$j,T’, 
given by 

with amplitudes .Sgj 

S g,3 = b-‘(S3+3q) 

S g,4 = a-*(& + 12Czs3 + 4~3 + 124) 

S p.5 = bb3[Ss + 2OCzS4 + 15& -I- (30~3 + 120&& + 5~4 + 60~302 + 6041 

S g.~ = b-4[Ss + 30~2.95 + 6OczS3S4 + (60~3 + 3OOc;)S4 + (90~3 +450&S, 

+(6Oc4 + 9OhzC3 + 12OOc-$S3 + 6~5 + 12Oqcz + 9Oc; + 720~34 + 36041 

S g., = b-5[S, + 42czSs + 105czS3S5 + (105~3 + 630&5 + 7Oc& 

+(42Oq + 2520&S& + (140~4 + 2520~~ + 42OOc$)S4 
+(105c3 + 630~; + 3159 + 5670~2~3 + 945Oc.$S,2 

+(105c5 + 2520~2~4 + 189Oci + 18900& + l26OOd)& 

+7cS + 2lOCzcs + 42OC3q + 2100& + 3150c& + 84004~3 + 252041 (10) 

The mndd factors are determined by combinatorics and, as in perturbation theory, can be related to 
a counting of tree graphs. This is espec/ally evident in the terms induced solely by the ck (cf. Fry lg84b), 
where the sum of coefficients is just j j-‘, the total number of labeled tree graphs. Equivalent results 
were first derived using a different technique by James & Mayne (1962), who present contributions up 
to Sf,, 0r o(<$. Notice that the parameters bj in the biasing function ca,n be chosen arbitrarily at each 
order, and thus can modify the matter amplitudes Sj into arbitrary galaxy amplitudes Sgj. 

Our formulation does not apply to the popular model of bias as a sharp threshold clipping (Kaiser 
1984, Politzer & Wise 1985. Bardeen et al. 1986, Szalay 1988), where 6, = 1 for 6 > VII and 6, = 0 
othenuise; this biasing function does not have a series representation around 6 = 0. However, such a 
clipping applied to a Gaussian background still produces a hierarchical result with Sgj = jjm2 in the limit 
Y >> 1, g < 1. Remarkably, this is the same result as we obtain from equation (10) for an exponential 
biasing of a Gaussian matter distribution, 6, = exp(ab/a) (cf. B a~ .d een et al. 1986, S~alay 1988). This 
bias function has an expansion Ss = &(uS/~)~/k! and thus cj = @‘-I, independent of a and c. With 
S; = 0, the terms induced by Cj = ti-’ in equation (10) also give S,,j = jjm2. We speculate that the 
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threshold bias applied to a hierarchical matter distribution will give results similar to equation (9) and 
equation (10). 

In a similar way one could compute the multipoint correlations and the biased multi-point amplitudes 
Qs.j in terms of the local matter amplitu+s Qj in equation (2). The calculation in this case will be 
identical to the one for the smoothed fluctkions above, with 5’; effectively replaced by jJ-‘Qj. but with 
additional attention required for topologically distinct configurations. 

2.3 General results: One point statistics 

The results summarized in equation (10) involve the cancellation of an increasing number of lower order 

terms; the raw moments (6; ) are of order Tg’*. Thus, that the cumulants of the biased distribution 
are also hierarchicai is likely to be more than an accident. This was proved in general in the following 
theorem by James (1955) and James and Mayne (1962): 

THEOREM 1: If a variat,e 6 possesses finite cumulants of all orders with ( 6j)C = O(v-j+‘), 
and if the cumulants of 6, = f(6) are calculated on the basis of a (possibly formal) Taylor 
expansion (4) where the bk do not depend upon Y, i.e. they are O(Y’), then (a;), = O(v-j+‘). 

As noted above, this is by no means obvious for j > 2, as the raw j-moment of 6, is of order u-j12, but 
on taking the connected part the terms UP to O(v-j+l) always seem to cancel. The explanation for this 
cancelation, i.e. the proof of the theorem, is based on an adoption of the Fisher rules for obtaining the 
sampling curnulants of k-statistics (Kendall, Stuart and Ord 1987) to statistics of polynomial symmetric 
functions. 

To prove the theorem, James (1955) first considers the variables z, = b,6’. It is straightforward to 
seethat( =&...C,(z,,...z, ‘, ), Therefore it is sticient to show that ( L,, . zTj ), is of order 
v-j+]. Now consider a sample 61,. . ,6, of n independent values of 6 to define the general statistics 
z, = b,(C6,)‘, t- = 1, 2, . James now uses the Fisher rule that states that to find the cumulants of 
the z-statistics in terms of population cmnulants, we can neglect an array which splits up into two or 
more disjoint blocks. Finally, to conclude the proof, it is necessary to use that each (si ) = a(v-j+l); a 
different structural relation is not preserved under the general transformation in equation (4). 

This theorem applies directly to the large scale distribution. From the results of perturbation theory 
we can wume that the matter distribution, 6, follows the hierarchical relation zj = (6J ), = Sjcj-’ 

and so we have the required conditions for the theorem with v = z;;‘. If biasing can be described by 
a local transformation, so that the galaxy field 6, can be expressed as in equation (4) with 6, = f(6) 
then we conclude from the theorem above that the galaxy distribution will also be hierarchical for small 
values of [2, i.e. large scales. Reversely, if the galaxy distribution is hierarchical and if 6, = f(6) then 
the underlying matter statistics must be hierarchical at large scales. 

2.4 General results: Multi-point statistics 

James (1955) also considers a more general result using multivariate sampling rules. He proposed and 
proved the following theorem: 

THEOREM 2. If 6 s,l = f1(6,, ,6~), 6s.2 = f2(61,. ,b,v). are functions of the variates 
61, , 6~ formally expansible in the forms: 

fk(‘13., > 6.~) = (bk)o + C(bk1l.i 6i + i C(bkC)2,ij 6i6j + “. , 
* ,I 

and if the j-cumulant, (6i, .6;, ), = C?(v-j+l), with il, , ij = 1,. , N and j = 1,2,. ., 
then the same holds for the cumulants (6,,i, 6,,ij ), of 69,zv. 
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For the case of spatial distribution we can interpret these variates as corresponding to the density 
contrast at different points. 6k = 6(z,) and 6 s+ = 6e(mP), so that the multivariate cumulants above are 
the standard correlation functions, (6(x1). .6(Zj) ), From the hierarchy (2) above, the j-correlation 
for matter is of order u-j+’ with v the inverse amplitude of the two-point function. Therefore a local 

biasing transformation, equation (4): 6s(ze) = f(6(2k)), will produce (6,(~r). bs(Zj) ), = O(V-J+‘) 
and consequently the hierarchy (2) for galaxies. 

Theorem 2 applies even when the coefficients bk are functions of position, an inhomogeneous, nonlocal 
biasing transformation, 6s(Zj) = F[sj, 6(zr), , I]. In this case, the induced correlations can have 
little in common with the underlying matter correlations. Nevertheless we still have (6,(2r) . .6s(Zj) ), = 
CJ(v-j+r), but now with local or scale-dependent values of Qj. 

2.5 A bias transformation Group 

In a practical situation, only the lower moments of the observed galaxy distribution can be determined. 
We will define two spatial distributions to be equivalent to order N if their moments agree up to order 
N; a class of equivalent distributions will be called an N-order distribution. We can also define the 
equivalence relation for bias transformations: two biasing transformations over an N-order distribution 
are equivalent if, and only if, the first N coefficients of expansion (4) are equal. The set of equiva- 
lent classes of transformations will be called N-order biasing or N-order transformations. With this 
nomenclature, equation (10) shows that an N-order transformation can arbitrarily change one N-order 
hierarchical distribution to another. It is easy to see that N-order transformations, {b ; . ; c,v}, form 
a non-Abelian Group of transformations. The composition (or group operation) of the transformation 
{bs ; cg.2 ; cg~ ; ) following {bA ; c,4,s ; c~,s ; . } yields the transformation: 

tbh ; CA.2 + bA C&2 ; CA.3 + 3 b.4 CA.2 C&2 + b; C8.3 ; . . . 1. 

The neutral element is { 1 ; 0 ; ; 0) and the inverse is: 

iw 

tb ; c2 ; c3 ; . }-’ = {b-l ; -b-%2 ; b-2(3d - ~3) ; . . }, (13) 

so that (10) can be easily inverted to give Sj in terms of Ssd. These properties will be useful when 
comparing models with observations. For example, consider that the distribution of both optical (0) 
and IRAS (I) selected galaxies are related to the matter distribution by {bo ; ~0.2 ; co,3 ; . . ] ad 
{bl ; ~7.2 ; cr.3 ; }. Under the group properties, there will also be a biasing transformation between 
the optical and IRAS distributions, 61 = fro(So), with {ho ; ~10.2 ; ~10.3 : . } given by 

ho = h lbo 

c10.2 = b;‘(qz - ~0.2) 

10.3 = b,2(q,3 - ~0.3) + 3 6;’ co.2 qo,z> 

and so on. Let us apply these properties to the observations. 

2.6 Biasing between optical and IRAS distribufions 

(14) 

The relations obtained above can be used to fit a phenomenological bias between optical (0) and IRAS 
(I) selected galaxies because, as pointed out in the introduction, both optical and IRAS distributions 
are hierarchical at large scales, at least to the lower orders. Direct comparison of the dispersion at 
different scales gives ( 62)1 = b$, ( 62),, with 610 = 0.7 f 0.1 (e.g. Strauss et al. 1992, Saunders et al. 
1992; although this is the value of b quoted at R E 8 h-’ Mpc, there is no significant different for larger 
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scales), in agreement with a local biasing transformation. We will look for a clans of transformations 
{b,o ; c,~,* ; clo,a ; } to relate optical. Eo, and IRAS. 61 = f(so) distributions. From (IO) we have: 

$3 = b;d(So.s + 3 ~10.2) 

51.4 = b;iWo,4 + 12 c1o.zso.3 + 4 ~10.3 + 12 40.2). (15) 

We apply this expression to values for amplitudes found from optical and IRAS samples: 

l for optical galaxies: Szapudi et al. (1992) from the Lick sample obtain So,3 = 4.32 f 0.21 and 
so,4 = 31 * 5. 

. for IRAS galaxies: Meiksin et al. (1992) obtain S1.3 = 2.19 & 0.18 and St.4 = 10.1 f 2.9 

(We have taken 7 = 1.8, S3 = 3Q3 and & = 16Q4.) These values are extracted from angular distribu- 
tions and corrected for projection using the same techniques for IRAS and optical galaxies. With these 
amplitudes and the value of blo above we use equation (15) to find obtain 

c10.2 = -0.93 f 0.06, 

c10.3 = 2.95 f 0.65, (16) 

incompatible, within the estimated errors (added in quadrature) with a linear biasing between optical 
and IRAS distributions, which would imply ~10.2 = ~10.3 = 0. By using the group composition properties 
(14) one can conclude that co,? # q-2, so that both can not be zero at the same time. Thus, a linear 
biasing from matter for both optical and IRAS galaxies is inconsistent with the observations cited. 

3 Discussion 

We do not observe the full matter distribution, but at best just part of the visible galaxy distribution, 
and, as shown above, in designing a bias prescription one must address the problem beyond linear order 
to extract meaningful information from higher order galaxy correlations. We can think of several distinct 
stages where a nonlinear processing may enter between one and the next. First, the matter field evolves 
gravitationally from initial conditions, a process that is well known to be nonlinear and that from Gaussian~ 
seed fluctuations produces hierarchical statistics, as in equation (1) or equation (2) (cf. Fry 19846, Goroff 
et al. 1986, Bernardeau 1992). This alone guarantees that the matter distribution is not Gaussian. At 
some point, physics determines how matter is processed into candidates for observation, luminous stars, 
galaxies, and so on. Evidence for dark matter suggests that this does not happen uniformly. The light 
produced is collected by telescopes, recorded by instruments, photographic plates or CCD’s. Finally, 
the astronomer applies further selection criteria to the images she obtains in order to create a catalog 
of galaxies or of clusters of galaxies. By equation (12), the end result is some effective transformation, 
likely to be different for each different category of objects observed. 

Previous models that attempt to relate the statistical properties of biased galaxy and matter distri- 
butions (Kaiser 1984, Politzer & Wise 1985, Bardeen et al. 1986, Szalay 1968, and references therein) 
have assumed Gaussian underlying matter fluctuations. The basic assumption in all these models is that 
the physical processes involved in galaxy formation can be described by a transformation of the matter 
field, 6,(z) smoothed over a galactic scale r. In the notation by Szalay (1988), a local transformation 
of the matter fluctuations, 6, leads to the galaxy fluctuations, 6, = f(a) = C(y) - 1, where y = 6/a is 
a normalized matter fluctuation and C is the ‘luminosity density.’ Equation (10) shows that assuming 
the matter fluctuations are Gaussian is inadequate for a gravitationally evolved field: at each order. the 
terms arising from gravity and from bias are of comparable amplitude. Fry (1986) has considered the 
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more general case of biasing from hierarchical matter fluctuations. but only up to the three-point galaxy 
correlation function, which was also found hierarchical. 

In this paper we have considered the more general cake of hierarchical. rather than Gaussian, matter 
fluctuations. We have shown that any sequence of local biasing transformations gives a contribution 
comparable to that from nonlinear gravitational evolution at each order in rr, As argued in 52.3, this 
result, that a very general nonlinear bias preserves the hierarchical structure in the limit of small 52, 
involves a remarkable cancelation which results from the statistical properties of connected moments. In 
a sense gravity evolution for large scales is similar to local biasing, but as pointed out by Fry (1984b) 
the self similar time evolution is a unique feature of gravity, and what might serve to distinguish gravity 
from any other transformation is the characteristic values of the amplitudes Sj, which can be calculated 
explicitly in gravitational instability. This, in turn, can allow US to determine properties of the bias 
function from S,j. 

To what extent can we say that the observed galaxy properties are a consequence of the initial 
Gaussian conditions? If we consider gravitational evolution in perturbation theory the problem of the 
initial conditions is very simple. If the initial correlations are in leading order (61 ), 0: (6’ )“, 

. CY < j/2 implies non-Gaussian and non-hierarchical initial conditions that dominate the evolution 
during the regime in which (6* ) is small. 

l j/2 < a < j - 1 implies quasi-Gaussian but non-hierarchical initial conditions. In this case, 
evolution will produce two contributions to [j : a dominant non-hierarchical term that grows as 
A’(t) and a hierarchical term with characteristic amplitude Sj that grows as A2(j-rl(t) but may 
not become significant until c u 1. 

l a>j- 1 implies strongly-Gaussian initial conditions. In this case, the leading order effect of 
evolution will produce hierarchical statistics with characteristic amplitudes Sj for all times. 

That is, the initial conditions for large-scale structure formation could be Gaussian if, and only if, the 
evolved matter distribution is observed to be hierarchical at large scales. 

The explicit relations between galaxy and matter amplitudes presented in equation (10) show that 
if we allow biasing to be an arbitrary function, then the observed galaxy amplitudes can be arbitrarily 
different l?om the matter ones. On the other hand, one can use these relations to learn about biasing by 
comparing galaxy amplitudes with theoretical matter predictions. It is also clear from (10) that a linear 
biasing approximation is consistent only for the two-point correlation function. In general, even in the 
limit of weak fluctuations on very large scales, the j-point galaxy amplitudes have biasing contributions 
not only from the linear term but from all orders up to j - 1. 

Are the observed hierarchical properties of the galaxy distribution a consequence of the hierarchical 
properties of matter? Or, are they an accident or conspiracy of galaxy-matter biasing? We have shown 
here that in the case of local biasing, the observed galaxy hierarchy at large scales can only be a conse- 
quence of hierarchical properties of the smoothed matter distribution and thus suggests that the initial 
conditions were indeed hierarchical or Gaussian. 
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